Romania - Republic of Serbia
IPA Cross-border Cooperation Programme

Characterization of surface layer-deposited structures
Thermal spray coating - coating produced by a process in which molten or semi-molten particles are applied by impact onto a substrate
Thermal spraying methods:
- plasma spraying:
 - atmospheric plasma spraying (APS)
 - vacuum plasma spraying (VPS)
 - high velocity oxygen-fuel (HVOF)

Drawbacks:
- internal oxide formation
- low passivity
- open pores and crevices between lamellae
- degradation of material during spraying
Investigation on high-velocity-oxygen-fuel-sprayed specimens of CoNiCrAlY powder with 8 wt.% Al and WC-Co powder with different WC grain sizes

MCrAlY coatings

- Structural modifications in the MCrAlY coatings before and after EB remelting
- Structure and thickness of the grown oxide scale

WC Co 83 17/Al8Si20BN coatings

- Variation of the coatings morphology
- Corrosion and wear resistance behaviour

Experimental results
MCrAlY’s are a family of materials which have a base metal(M) of cobalt, nickel, and or iron, plus chromium, aluminium, yttrium and sometimes other alloying elements.

Excellent performance at elevated temperatures and corrosive type environments

MCrAlY coatings
Thermal barrier coating system and temperature gradient during service
Substrate - Ni superalloy - INCONEL 617

<table>
<thead>
<tr>
<th>CoNiCrAlY</th>
<th>Co</th>
<th>Ni</th>
<th>Cr</th>
<th>Al</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 %Al</td>
<td>37.5</td>
<td>32</td>
<td>22</td>
<td>8</td>
<td>0.5</td>
</tr>
<tr>
<td>12 %Al</td>
<td>30.75</td>
<td>26.25</td>
<td>30.2</td>
<td>12</td>
<td>0.8</td>
</tr>
<tr>
<td>15 %Al</td>
<td>25.5</td>
<td>21.8</td>
<td>36.8</td>
<td>15</td>
<td>0.9</td>
</tr>
</tbody>
</table>

SEM micrographs of the CoNiCrAlY powder
SEM micrographs of the CoNiCrAlY coating: (a) as-sprayed, (b) after the heat treatment, (c) after electron beam remelting
SEM images of MCrAlY coatings after oxidation at 950°C in air: as-sprayed (a) and EB beam treated (b) coatings.
X-ray diffraction patterns of the as-sprayed coating before (a) and after oxidation at 950 °C for 100 h (b).
X-ray diffraction patterns of the remelted coating before (a) and after oxidation at 950 °C for 100h (b)
CERMET is a CERamic-METallic material and it is a composite coating that has ceramic particles in a metal matrix.

CerMet

- Ceramic phase
 - WC, Cr$_3$C$_2$, TiC
 - Good wear behavior

- Metallic phase
 - Co, Ni, Cr
 - Good corrosion resistance

Cermet materials
<table>
<thead>
<tr>
<th>Cermet coatings</th>
<th>Properties</th>
<th>Application field</th>
</tr>
</thead>
<tbody>
<tr>
<td>WC/Co; TiC<sub>x</sub>N<sub>1</sub>/Mo</td>
<td>Wear resistance, high temperature resistance</td>
<td>Cutting tools and processing devices</td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub>/Al; Al/SiC</td>
<td>Wear and breaking resistance; stiffness</td>
<td>Pistons, disc brake, bearings, crankshafts</td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub>/Ni-Co</td>
<td>High temperature resistance</td>
<td>Parts of shuttle engines, planes and helicopters</td>
</tr>
</tbody>
</table>
Information about the feedstock powders

<table>
<thead>
<tr>
<th>No</th>
<th>Chemical composition</th>
<th>Powder particle size range [μm]</th>
<th>WC grain size range [μm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>WC Co 83 17</td>
<td>15-45</td>
<td>1-5</td>
</tr>
<tr>
<td>2.</td>
<td>WC Co 83 17</td>
<td>15-45</td>
<td>0,1-0,5</td>
</tr>
</tbody>
</table>

SEM micrographs of the WC-Co 83 17 powders
(a)-microscale WC-particles, (b)-nanoscale WC-particles
SEM micrographs of the WC-Co coating obtained from microscale WC-particles (sample 1)

SEM micrographs of the WC-Co coatings obtained from nanoscale WC-particles (sample 2)
X-ray diffraction patterns of sprayed coatings

(a)-sample 1, (b)-sample 2
Wear behavior of the WC-Co coatings

Pin-on-disk method

WC ball – $\Phi=6$ mm

$F = 15$ N, $v_r = 20$ cm/s, $d= 1000$ m, $R=5.4$ mm
Wear rates of the tested samples

<table>
<thead>
<tr>
<th>Material</th>
<th>Wear rate [mm³/N/m]</th>
<th>Wear rate 10^{-7} [mm³/N/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>0.0000032</td>
<td>32</td>
</tr>
<tr>
<td>Sample 2</td>
<td>0.0000048</td>
<td>48</td>
</tr>
</tbody>
</table>

Sliding wear rates of the tested samples
Values of the measured corrosion potential and current density

<table>
<thead>
<tr>
<th>Sample</th>
<th>Electrochemical data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i_{corr} (mA/cm2)</td>
<td>E_{corr} (mV)</td>
</tr>
<tr>
<td>1</td>
<td>0.0245</td>
<td>-154.6</td>
</tr>
<tr>
<td>2</td>
<td>0.0058</td>
<td>-140.5</td>
</tr>
</tbody>
</table>

Polarization curves of the tested materials in 10^{-3} M H_2SO_4 at room temperature
Improvement of the wear resistance of the titanium

SEM micrographs of the Al8Si20BN powder and of the as-sprayed coating

SEM micrographs of the as-sprayed and EB remelted coating
Optical micrographs of the deposited and remelted coating (surface and interface...

<table>
<thead>
<tr>
<th>Material</th>
<th>Titanium</th>
<th>Titanium alloyed 1</th>
<th>Titanium alloyed 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HV50</td>
<td>130</td>
<td>531</td>
<td>447</td>
</tr>
</tbody>
</table>
Thank you for your attention!