

Romania - Republic of Serbia IPA Cross-border Cooperation Programme

From actuation control to ferromagnetism and biocompatibility in shape memory alloys

Shape memory & Actuation

Can we try to outsmart Smart materials !?

...via design of actuators with enhanced output

Embeeded dissimilar transformations

TiNiCu	TiHfNi	Steel		TiNiCu	TiHfNi
Mo					
Steel		TiNiCu	TiHfNi	Steel	

B. Winzek et al. Materials Science and Engineering 2004

Embeeded SMA transformations

Factors to play [smart] with:

Composition Stress Microstructure

Ways to play [smart] with:

- by generating architectures based on thin films that would allow the maximization of the properties (actuation) via
 - substrate's reinforcement
 - layering the films
 - grading the film
 - modulating the actuation response

Stress -related observations

Bimorph cantilever

200

 $(\mathsf{TiPd})_{50}(\mathsf{TiNi})_{50}$

Ni₅₀Mn₂₈Ga₂₂ /Si annealed at 400 (0), 500(△) și 600 () °C

C. Crăciunescu, Y. Kishi, L. Saraf, R. Ramesh and M. Wuttig, MRS Proceedings vol 687

Composition-related observations

Ti-Ni-Pd system

B. Winzek and E. Quandt, Zeitschrift fuer Metallkunde

Microstructure-related observations

Successive occurrence of ferromagnetic shape memory properties during crystallization of rapid annealed free-standing

C.M. Crăciunescu, J.Li si M.Wuttig, Thin Solid Films

H. Rumpf, C.M. Craciunescu et all. - JMMM

Main question

How to play smart with thin film opportuntities and to generate a new <u>and controlable</u> space for microactuation

Experimental set up

Heating

Bimorphs

Bimorphs

with additional stress control layer

Bimorphs → Trimorphs

Trimorphs

on heating

on cooling

Trimorphs

Modulating the actuation response

Shape memory & Biocompatibility

HET-CAM

HET CAM TEST

Assessment of biocompatibility (in situ experiments)

In collaboration with Universitatea de Medicina si Farmacie "Victor Babes" Timisoara

Ferromagnetism & Shape memory

Magnetically controlled shape memory

Where Ferromagnetic Shape Memory Alloys can be found?

Wuttig, Li, Craciunescu - Scripta mater

Martensitic phase changes - likely to occur at certain average valence electron concentrations

Ferromagnetic martensites a certain (s+p+d) concentration and a ferroantiferromagnetic transition.

Shape memory alloy require a special lattice relationship between high and low temperature phases to be structurally compatible.

Ferromagnetic shape memory alloys (FMSMAs) form when all three conditions are fulfilled.

Co-Ni-Ga ferromanetic shape memory system

Craciunescu C.M., et all. SPIE Proceedings, vol.4699 (2002) 235-244

Wuttig, Li, Craciunescu - Scripta mater. 44

C.M. Craciunescu, Y. Kishi, M.Wuttig, Scripta Materiallia, vol 47/4

Co58Ni22Ga20

Martensitic matrix and non-martensitic precipitates

 $\mathrm{Co}_{50}\mathrm{Ni}_{22}\mathrm{Ga}_{28}$

Full martensitic structure

b. integrated area under the A(110) peak describing the phase transition on heating (□) and on cooling (■).

50

Temperature [°C]

100

a. X-ray spectra on heating and cooling detailing the martensite M(110) peak disappearing on heating and reappearing on cooling, on top of the $\gamma(111)$ peak.

 $Co_{47.22}Ni_{22.44}Ga_{30.29}$

Integrated area under the peak (a.u)

0

C.M. Craciunescu et all. -SPIE Proceedings

Main Conclusions

- Enhancement of actuation is possible beyond the classical solutions
- Significant differences can be observed between bimorphs and trimorphs
- Signal modulation can be achieved in trimorphs by appropriately selecting the films transformation and their deposition sequence
- Assesment of biocompatibility via in situ tests
- Ferromagnetic shape memory alloys show martensitic phase transformation controlled by thermal and magnetic fields

Goals within POCAL Project

- To manufacture shape memory alloys that are thermally and magnetically controlled
- To develop layered structures based on shape memory alloys
- To control the properties by nanostructuring via severe plastic deformation and rapid solidification

www.romania-serbia.net